Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Luminescence ; 39(3): e4703, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38433325

RESUMO

Transition metal dichalcogenides (TMDCs) are versatile two-dimensional (2D) nanomaterials used in biosensing applications due to their excellent physical and chemical properties. Due to biomaterial target properties, biosensors' most significant challenge is improving their sensitivity and stability. In environmental analysis, TMDCs have demonstrated exceptional pollutant detection and removal capabilities. Their high surface area, tunable electronic properties, and chemical reactivity make them ideal for sensors and adsorbents targeting various contaminants, including heavy metals, organic pollutants, and emerging contaminants. Furthermore, their unique electronic and optical properties enable sensitive detection techniques, enhancing our ability to monitor and mitigate environmental pollution. In the food analysis, TMDCs-based nanomaterials have shown remarkable potential in ensuring food safety and quality. These nanomaterials exhibit high specificity and sensitivity for detecting contaminants, pathogens, and adulterants in various food matrices. Their integration into sensor platforms enables rapid and on-site analysis, reducing the reliance on centralized laboratories and facilitating timely interventions in the food supply chain. In biomedical studies, TMDCs-based nanomaterials have demonstrated significant strides in diagnostic and therapeutic applications. Their biocompatibility, surface functionalization versatility, and photothermal properties have paved the way for novel disease detection, drug delivery, and targeted therapy approaches. Moreover, TMDCs-based nanomaterials have shown promise in imaging modalities, providing enhanced contrast and resolution for various medical imaging techniques. This article provides a comprehensive overview of 2D TMDCs-based biosensors, emphasizing the growing demand for advanced sensing technologies in environmental, food, and biomedical analysis.


Assuntos
Poluentes Ambientais , Nanoestruturas , Materiais Biocompatíveis , Sistemas de Liberação de Medicamentos , Eletrônica
2.
Mol Biotechnol ; 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37882940

RESUMO

The development of sustainable and renewable energy production is in high demand, and bioenergy production via microbial digestion of organic wastes is in prime focus. Biogas produced from the microbial digestion of organic waste is the most promising among existing biofuel options. In this context, biogas production from lignocellulosic biomass is one of the most viable and promising technologies for sustainable biofuel production. In the present review, an assessment and feasibility advancement have been presented towards the sustainable production of biogas from rice straw waste. Rice straw (RS) is abundantly available, contains a high composition of cellulose, and is found under the category of lignocellulosic waste, but it may cause severe environmental issues if not treated. Whereas, due to its high cellulose and inorganic content, lower cost, and huge availability, this waste can be effectively valorized into biogas production at a lower cost on a commercial scale. Therefore, the present review provides existing insight in this area by focusing on the operational parameter's improvement and advancement in the research for the expansion of mass-scale production at a lower cost. Thus, the presented review analyzed the processing parameters status, associated challenges, and positive endnote solutions for more sustainable viability for biogas production.

3.
Sci Total Environ ; 876: 162765, 2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-36906037

RESUMO

Cellulases are the one of the most highly demanded industrial biocatalysts due to their versatile applications, such as in the biorefinery industry. However, relatively poor efficiency and high production costs are included as the key industrial constraints that hinder enzyme production and utilization at economic scale. Furthermore, the production and functional efficiency of the ß-glucosidase (BGL) enzyme is usually found to be relatively low among the cellulase cocktail produced. Thus, the current study focuses on fungi-mediated improvement of BGL enzyme in the presence of a rice straw-derived graphene-silica-based nanocomposite (GSNCs), which has been characterized using various techniques to analyze its physicochemical properties. Under optimized conditions of solid-state fermentation (SSF), co-fermentation using co-cultured cellulolytic enzyme has been done, and maximum enzyme production of 42 IU/gds FP, 142 IU/gds BGL, and 103 IU/gds EG have been achieved at a 5 mg concentration of GSNCs. Moreover, at a 2.5 mg concentration of nanocatalyst, the BGL enzyme showed its thermal stability at 60°C and 70 °C by holding its half-life relative activity for 7 h, while the same enzyme demonstrated pH stability at pH 8.0 and 9.0 for the 10 h. This thermoalkali BGL enzyme might be useful for the long-term bioconversion of cellulosic biomass into sugar.


Assuntos
Celulase , Grafite , Oryza , Fermentação , Oryza/química , Celulase/química , Celulase/metabolismo , beta-Glucosidase/metabolismo , Hidrólise
4.
Bioresour Technol ; 376: 128847, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36898558

RESUMO

Due to the limited availability of fossil fuels, pollution causing serious environmental issues, and their continuously rising price, the development of low-cost efficient enzymes and their implementation in biomass-based bioenergy industries are highly demanded. In the present work, phytogenic fabrication of copper oxide based nanocatalyst has been performed using moringa leaves and has been characterized using different techniques. Herein, the impact of different dosages of as-prepared nanocatalyst on fungal co-cultured cellulolytic enzyme production under co-substrate fermentation using wheat straw and sugarcane bagasse in 4:2 ratios in solid state fermentation (SSF) has been investigated. An optimal concentration of 25 ppm of nanocatalyst influenced the production of 32 IU/gds of enzyme, which showed thermal stability at 70 °C for 15 h. Additionally, enzymatic bioconversion of rice husk at 70 °C librated 41 g/L of total reducing sugars, which led to the production of 2390 mL/L of cumulative H2 in 120 h.


Assuntos
Moringa oleifera , Saccharum , Celulose/metabolismo , Moringa oleifera/metabolismo , Cobre , Saccharum/metabolismo , Fermentação , Óxidos
5.
Int J Biol Macromol ; 237: 124033, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36918076

RESUMO

Cellulases are among the most in-demand bioprocess enzymes, and the high cost of production, combined with their low enzymatic activity, is the main constraint, particularly in the biofuels industry. As a result, low-cost enzyme production modes with high activity and stability have emerged as the primary focus of research. Here, a method for producing a graphene like carbon nanostructure (GLCNs) has been investigated utilizing paddy straw (Ps), and its physicochemical characteristics have been examined using a variety of techniques including XRD, FT-IR, SEM and TEM. Further, the pretreatment of Ps feedstock for cellulase production was done using diluted waste KOH liquid collected during the preparation of the GLCNs. To increase the production and stability of the enzyme, newly prepared GLCNs is utilized as a nanocatalyst. Using 15 mg of GLCNs, 35 IU/gds FP activity was seen after 72 h, followed by 158 IU/gds EG and 114 IU/gds BGL activity in 96 h. This nanocatalyst supported enzyme was thermally stable at 70 °C up to 15 h and exhibited stability at pH 7.0 for 10 h by holding 66 % of its half-life.


Assuntos
Celulase , Celulases , Grafite , Nanoestruturas , Carbono , Espectroscopia de Infravermelho com Transformada de Fourier , Celulases/química , Hidrólise
6.
J Lipid Res ; 46(8): 1786-95, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15772432

RESUMO

We compared two HPLC methods (anion exchange [AE] and steric exclusion [SE]) for analysis of mouse lipoprotein profiles by determining coefficients of variability (CVs) under varying conditions. CVs for AE and SE were comparable on fresh samples. There was an inverse relationship between subfraction curve area and CV [r = -0.65 (AE) and -0.50 (SE)], consistent with the interpretation that as curve area decreased, error variance increased and signal-to-noise ratio decreased. Sample storage did not affect SE. In contrast, with AE, alterations in measured lipoproteins were apparent after storage, including a decrease in the HDL subfraction [66.8% (baseline) vs. 15.9% (1 week); P < 0.01] and an increase in areas under LDL and VLDL peaks. Concomitant with decreasing HDL area, reproducibility deteriorated with the duration of storage. Analysis of the effects of decreasing sample injectate volume to <25 microl on SE lipoprotein subfractions revealed that areas under LDL and VLDL peaks decreased and persisted as volume was decreased further. Areas under all lipoprotein subfractions measured with either AE or SE were linearly correlated with the amount of cholesterol [r = 0.69 (AE) and 0.87 (SE)]. Both AE and SE yield reproducible, accurate, and rapid measurements of lipoproteins from small amounts of serum. AE yields more sensitive, high-amplitude, well-defined peaks that can be easily distinguished and necessitates the use of smaller sample volumes compared with SE, but sample storage causes alterations in the chromatogram. SE appears better suited to serial analyses involving stored samples.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Lipoproteínas/sangue , Animais , Resinas de Troca Aniônica , Colesterol/análise , Cromatografia em Gel , Lipoproteínas HDL/análise , Lipoproteínas LDL/análise , Lipoproteínas VLDL/análise , Métodos , Camundongos , Preservação Biológica , Manejo de Espécimes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...